位置: 首页 >>学术报告 >>学术报告 >> 正文
学术报告

美国密西根大学Jeff Plott博士的学术报告通知

报告题目:Silicone 3D Printing and Medical Device Development

报告人:Jeff Plott博士

时间:2019.9.27 上午10:30-11:30

地点:玉泉校区教1-103会议室


image.png

Abstract: Due to the soft nature of silicone, additive manufacturing (AM) is technically challenging. The tangential and normal forces imparted by the extrusion-based AM of silicone were experimentally studied to investigate the effects of three key process parameters: volumetric flow rate, nozzle tip inner diameter, and layer height. A CFD model was also created and compared to the experimental results.  The interaction between the nozzle tip and extruded silicone bead is controlled to either prevent any interaction, flatten the top surface of the extruded silicone, or immerse the nozzle in the extruded silicone. Results showed that tangential and normal forces strongly depend on this interaction. These findings create a foundational understanding of the extrusion-based AM of silicone and other soft materials. The results presented can be implemented to enable control strategies which may greatly expand the design freedoms for producing compliant, stretchable, and functional custom silicone parts. 

Dr. Jeff Plott completed his undergraduate, master’s, and PhD in Mechanical engineering at the University of Michigan. Dr. Plott’s research is primarily in design and manufacturing with his PhD focusing on the additive manufacturing of soft silicone elastomers, enabling the custom manufacturing of functional and compliant silicone structures with potential use in countless medical, consumer, transportation, and building applications. Additionally, Dr. Plott designs and develops medical devices including: (1) a long-term nasophyngeal airway (NPA), (2) a wound cleaning device to minimize aerosols, (3) the clot buster mechanical thrombectomy device for stroke treatment, (4) a catheter balloon for gastroesophageal resuscitative occlusion of the aorta (GROA), (5) custom silicone CPAP/BiPAP masks for ALS patients, (6) a lacrimal stent to facilitate tear drainage, (7) a microvascular anastomosis device, (8) a tourniquet for military and civilian use, (9) a device to aid in the treatment of neuroma, and (10) a prostate biopsy needle device.

浙江大学制造技术及装备自动化研究所
地址:浙江省杭州市西湖区余杭塘路866号
邮件:ipe@zju.edu.cn
电话:0571-87951145

微信公众号